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NUMERICAL-ANALYTIC ALGORITHM O F  T H E  S T E F A N  P R O B L E M  

SOLUTION 

N.  A.  M u k h e t d i n o v  UDC 536.42:551.34 

An algorithm is developed for the numerical solution of the Stefan problem for boundary conditions of 
the first, second, and third kinds, respectively, on the surface of a freezing (thawing) layer by using the 
solution of  the heat conduction equation in the form of  a series in the spatial coordinate including two 
derivatives of  the time functions and their derivatives. An approximate estimation of the proposed 
method is given in an example of computing the freezing of  water in a reservoir. 

The necessity to determine the temperature state of objects being investigated with the natural-time change in 
the environment and the parameters governing it taken into account (the wind velocity, solar radiation, snow cover) 
occurs in solving many practical problems of engineering glaciology, geocryology, and metallurgy. Determination of 
the phase transition front of freezing water, soil, or a cooling metal ingot in a general formulation is a complex 
problem whose methods of solution still remain largely undeveloped [1-3]. This refers mainly to multidimensional 
problems with moving boundaries and one-dimensional problems with boundary conditions different from the first 
kind. Boundary conditions of the first kind for which the solution of the Stefan problem has been developed 
sufficiently completely assume the temperature of the surface of the freezing (thawing) massif to be given. In practice 
this yields results that are only qualitatively in agreement with the actual process. The algorithm considered below for 
the solution does not impose similar constraints and is similar in its content to the method of differential series [4, 5] 
but differs favorably from the latter in its clearness and simplicity. The formulated problem can be solved for any 
boundary conditions by an insignificant modification of one formula. Moreover, the temperature field of the freezing 
(thawing) or cooling layer needed for stress state computations and the motion law ~(r) of the phase interface 
boundary can be determined. The mathematical formulation of the problem has the form 

Otl(x , .~) 02tl (x, -c) (1) 
- -  al  , x E [0, ~ (x)], x E [0, ~o], 

Ox ax 2 

ot2 (x, ~) ozt~ (x, ~) 
- ao , x E [~ (% ~ l ,  "~ E [0, ~ l ,  

0"~ - O x  2 (2) 
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Fig. 1. Graphs of the degree of water freezing in time: 1, 2, 3) for boundary conditions 
of the third kind a(r) -- 11.63; 23.26, and 116.3 W/(m2.K), respectively; 4) for 
boundary conditions of the first kind corresponding to the real behavior of the 
temperature variation; 5) for boundary conditions of the first kind corresponding to the 
mean-monthly temperature; 6) outside air temperature change in time; 7) degree of 
freezing calculated from (31); 8) self-similar solution of the Stefan problem; 9) mean- 
monthly temperature. ~, m; t, *C; r, g. 

with boundary conditions on the surface of the freezing (thawing) massif: 
First kind 

t t  (o, ~) = t .~(-c), .~ c [o, oo1, 

Second kind 

(3) 

Third kind 

~t,1 at I (X, T) [ 
Ox lx=o = qs~.('c), ~C[0, oo1, 

Xl Ot l(x,  ~) I 
x 0 = ~ (x) [tm U)--  tI(0, ~)1, -cr ~1, 

Ox , =  

on the moving phase interface boundary for x = ~(r) 

8t~ (x, -c) ' d L  (x, ~) I 
= qp 

d~ it). 
dr 

(4) 

(5) 

(6) 

(7) 

for equation (2) 

~(o)---o, 
(8) 

with the initial condition 

Ot~ ax(X' "c) " x~ = 0 ,  "eft[0, c~], (9) 
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t~ (x, o) -~ o., (x), x E [o, oo1. (lO) 

The law of phase interface boundary motion ~(r) with (8) taken into account assumes that the domain of definition of 
(1) is concentrated for r ffi 0 at a point (is degenerate) and consequently the initial conditions is taken equal to zero. 
Formulation of condition (8) in the form in which it is taken is limited from the representation of the solution of (1) 
in spatial coordinates in the form of a power series including two arbitrary time function ~ r )  and ~(r) and their 

derivatives that are later determined as a function of the boundary conditions from (3)-(5) and (6): 

,,=o i aT:~n! --dT-~, qo (~) @ aT(2n+l ) !  I , d-~ / (11) 

It is characteristic for the solution of (11) that for r ~ [0, oo] 

t~ (0,  "x) = q0 (~) ,  at~ (X,ox ~) !~=o = ~ (~c). 

Upon their substitution into conditions (3)-(5) we obtain the following expressions 

'r ('0 = t~m:('O, "~ E [0, ool, (12) 

~F (7) = % , ~ ( ' ~ ) / ~ ,  "~ ~ [0, ~1,  (13) 

(p(T)-- L~ W(x)+tra(X),  xCi0" ec], (14) 

that must be used as relationships governing the interconnection between the functions g~(r) and @(r) and their 
derivatives as a function of the boundary conditions on the surface of the medium under investigation. Upon 
satisfaction of (11), condition (6) on the moving boundary and taking account of (12)-(14) to determine the function 
@(r) (for boundary conditions of the first and third kinds) and ~o(r) (for the boundary condition of the second kind), 

we obtain the following differential equation: 
For boundary conditions of the first kind (3) with (12) taken into account 

r l ~ 0  ' ' 

For boundary conditions of the third kind (5) with (14) taken into account 

tp= _~o{ (~(x))2~a 
, a~2n! cr ('c) t i,,,2,z+l IiC ,,  ] lid./ , I} a~(2n + 1)! ' ~ ) qr(x) + a 7 2 ~ - -  ~ x  toy(X) , (16) 

For boundary conditions of the second kind (4) with (13) taken into account 

,,=0 a'~2n! -~x (p(x) 4- ~laT (2nq - 1)! ~ qsur(t) " (17) 

If we take 

W(~) = ( / p i  ~ur (x))/~(x); 
0 8 )  

(19) 
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then (15) is transformed into an identity. This confirms that (t8) and (19) are the solution of (15). Analogous 

relationships hold for (16) for 

q~(~) (tp--tm (,).)/(~(~c)-~- L1 i "  (x) / ' (20) 

~mt~(~) r , '  d ,,, i[/ '~ ~'" ~ (~) ) (21 ) r  ~ ( 2 n + b  , ' 

as well as for (17) for 

(x) (22) r -~  - ~---[- ~s~(~), 

If the change in the derivatives of the function ~(r) with respect to time are neglected in (18) and (19) then they are 
formulas to determine the heat flux to the freezing front used for the approximate solution of  the Stefan problem [2], 
which is a confirmation of  the more general nature of the results obtained. 

For known values of the functions ~o(r) and ~(r) determined by the solution of the differential equations (15)- 
(17), the heat flux to the freezing (thawing) front should be determined in the general case from the expression 

~a c3t* (x, ~)=~(~ i  = )~ i,~.~ (~ ('c)) 2~-~ r ' d ' n J  ] 1 i Ox ~ aT(2n--  1),. l ( - ~ - )  flo(x) + ~='~0 ~ '  (~(T))2~a~2n! ~d(__~_)" q'(-c)j . (24) 

Using the relationships (18)-(23), we determine the heat flux satisfying the given boundary condition in each specific 
case from (24). The heat flux directed toward the freezing front from the thawed zone and corresponding to the 
solution (2) in the domain fl~. -- {x ~ ~(r), r ~ [0, oo] for O2(x ) -- t~. -- const, is found from the dependence that is 
ordinarily utilized for approximate and self-similar solutions of the Stefan problem [2, 6]: 

k~ Oh(x, ~) I =~(~)+o ;to_to 
" , " ~ C [ O ,  ~].  

Ox V na2x (25) 

Taking account of  (24) and (25), we obtain from condition (7): 
For boundary conditions for the first kind 

dg _ 2 ~ ) ~c 
dr qp [~=, a?(2n- - ] ) [  ~, d'~ j -+tp-- tsur( '~ 

.~/'(2'~+1)[' a )~,~ur(~)}, ~ - } ,  
n ~  1 

(26) 

t 2 

For boundary conditions of  the second kind 
1 

n - - y  

d'c qp I af (2n- -  1)[ 

1 ~-- n+ y 
+. V gq sur (x) q_ @ g 

For boundary conditions of the third kind 

d'~ qm , = 

+) ' (0+  ~ (~(.~))2~-, [( a )~ ]} to_ } 
n=, ~1'(2n--1)! ~ t,~(.c) - z ~  . 

(27) 

(28) 
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The equations obtained are nonlinear in the degree of freezing (thawing) in all the boundary conditions considered. 

The Runge--Kut ta  method of  its modification [7] is a sufficiently well-developed method for the approximate solution 

of such equations. 
The surface temperature tsurf(r), the heat flux qsua(r) and the environment temperature tm(r), that should be 

represented in the form of  analytic dependences in the solution, all enter into (26)-(28). The mentioned characteristics 
are determined discretely at definite time intervals during the day in the practice of  meteorological observations. It is 
necessary to select an analytic dependence from these data which would be the best approximation to the given one. 

Let values of  the temperature determined after different  time intervals r k during a time interval L be known. For 

instance rm(r) k = (tin) k = tk; (k = 0, 1, 2 . . . . .  2p), then the sum 

.v  ( .=2~'~ sin 2 a x )  m, (x) = a~ + ~ a.., cos m + bm m - - - -  t (29) 
2 L L m=l 

will be  the best approximation of  the given discrete temperature distribution if  the coefficients a o, am, and b m are 

calculated from the formulas [81 

2p--I 1 ~p-I 1 ~p-I kmn 1 lemz~ 
a o -  ~ th; a m = L  ~ t h c o s - ;  b in= ~ t ~ , s i n - -  

P P h=o 'L  P h=o P h=o 

m = 1, 2 ,  3 . . . . .  where bp = 0. The derivatives with respect to time of  (29) needed in the computations are here 

determined as 

dx~ ~=1 L ~ L (30) 

The temperature determined by means of  (29) will equal the surface temperature of  the freezing massif if appropriate 

measurings of  the temperature on the surface are used in determining the coefficients a o, a m, and bm. The heat flux is 
determined in an analogous manner. The solution of the differential  equations (26)-(28) with (18)-(23), (29), and (30) 

taken into account was realized by a Runge--Kut ta  method of fourth order of  accuracy on an electronic computer. 

The problem was solved in application to the formation of  ice in a reservoir in the fall. The values of the quantities 

entering into the computation are )q = 1.97 W/(m.K); ;~z = 0.58 W/(m.K); ~(0) = 0; a 1 = 0.00378 m~'/h; a s = 0.0005 

mS/h; t s = 2.4~ qp --- 335200 k J/mS; tp --- 0*C; L - 720 h; p = 15. 
One of the modifications using the mean monthly temperature ( t l =  --17.1~ was solved with boundary 

conditions corresponding completely to the solution of the self-similar problem [2]. In this case the regularity of the 
change in degree of  freezing agreed completely with the computations performed according to the known formula 
~(r) = Bv/'F(Fig. 1, curves 5, 7, 8). The results practically agree if ~ is determined from the formula [2] 

~ =  ~ _ 2 ~ . A + _ _ _ _ _ T  ~z~t~ t~ V / z~ 
qp zta2qp g p :~a2 (31) 

and differ  by less than 3% for/~ determined from the rigorously self-similar solution. A certain difference between 

them is apparently due to just the error in the approximation of the constant mean-monthly  temperature (curve 9) 
according to (29). On the whole, the consistent agreement between these three results in the whole range of computed 

time variation with an error not exceeding 3% is one of  the proofs of the correctness of  the method developed. 
Upon using the real behavior of the outside air temperature variation (curve 6) in the computations, the degree 

of freezing determined by the computation differs,  in principle, f rom the self-similar solution by times up to 50% 

(curves 4 and 5). The influence of  the temperature change appears especially substantially for  small values of the 
degree of freezing (~(r) < 0.5 m). As the thermal resistance of  the frozen layer increases, this influence is smoothed 
out. Among the physical phenomena increasing the thermal resistance of the frozen layer is also the state of its 

surface, for instance, the presence of  snow cover and the change in the surface heat transfer coefficient  to a near- 
earth air layer. In the most simple case these processes can be taken into account in approximate engineering 

computations by the following expression 
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The substantial influence of the air heat transfer coefficient to the surface on the magnitude of the freezing 
(curves 1, 2, 3) was detected in the 11.63-116.3 W/(m2.K) range by computations. For c~(r) = 11.63 W/(m2-K), which 

holds at wind speeds _< 3 m/sec, the degree of freezing is 70% of the computed quantity performed for boundary 
conditions of the first kind. This difference is tracked well even for ~(r) = 116.3 W/(m=.K) (curves 3 and 4). 

Approximate computations showed that the quantity of terms kept in the series should not be less than seven 
to achieve the requisite accuracy. The error in the computations grows abruptly with fewer series terms and the results 

are dubious. 
On the whole, the developed method of solving the Stefan problem with arbitrary boundary conditions differs 

favorably from numerical methods assuming discretization in the coordinates and the time because of application of 
the analytic dependences (24), (25), and (29). None of the constraints inherent to the numerical method interferes in it. 

NOTATION 

Here q(x, r), t~.(x, r) are temperatures of the frozen and thawed phases; A 1, A2; a 1, a 2, coefficient of thermal 
conductivity and diffusivity of the frozen and thawed phases; tin(r), t,urt(r), environment and surface temperature; 
qsun,(r), heat flux on the surface; a(r), heat transfer coefficient; {(r), phase transition front coordinate; tp, phase 
transition temperature; O2(x), initial temperature of the thawed phase; r, time; x, a coordinate; y = (((r)2; %f(r), 
effective heat transfer coefficient; Asn(r), snow cover thickness; Asn(r), snow heat-conduction coefficient. Subscripts 
1 and 2 denote the frozen and thawed zones, respectively. 
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